Alex J. Doe

3700 Chestnut Street, Box 380 | Philadelphia, PA 19104 | (973) 555-1212 | adoe@seas.upenn.edu | Portfolio: www.alexdoe.com

EDUCATION	University of Pennsylvania , School of Engineering & Applied Science, Philadelphia, PA Master of Science in Engineering in Mechanical Engineering & Applied Mechanics, GPA: 3.56/4.00	May 202x
	Duke University – Durham, NC Bachelor of Science in Engineering, dual major in Mechanical Engineering & Mathematics	June 201x
SKILLS	 Programming Languages: MATLAB, Python, C/C++, Fortran, MPI, Java, Tcl Software: Mathematica, FUN3D (CFD), Simulink, Pointwise, High-Performance Computing, TecPlot, Linux, Google Earth KMLs, SolidWorks, ANSYS Fluent, COMSOL, XFOIL, LabVIEW Sabrication: Composites, Industrial Fabrication, Plasma Cutting, Oxy-Acetylene Cutting, CNC Milling, Laser Cutting, 3D Printing 	
RELEVANT COURSES	Robotics and Automation, Control Systems Design, Machine Perception, Machine Learning, Robotics, Vision and Learning, Hybrid Systems, Motion Planning, Mechatronics, and Bio-mechanics	
ENGINEERING EXPERIENCE	ROBOT CENTRAL – San Francisco, CAMay 202x – August 202xMechanical Engineering Intern-• Developed C++ microcontroller interface to enhance research efficiency• Increased accuracy of pressure sensing in experimental trails by incorporating unidirectional sensor• Integrated and tuned new PID speed controller to improve testing framework• Designed proprietary new feature for Cleaning Development Team to reduces COGS, increases IEC benchmark performance, and improve consumer experience	
	 SMITH LABORATORY - Atlanta, GA June 202x - August 202x Engineering Intern Designed, implemented, tested, and documented automation routine for manufacture of measurement tool Used Simulink to generate HDL code to run on FPGA, with the purpose of testing and documenting intricacies and limitations of data transfer between an FPGA and ARM processor 	
	BIG ROBOTICS – Austin, TX June 202x – August 202x <u>Robotics Intern</u> • Contributed to entire product development lifecycle, including planning, design, prototyping, testing and iterating, of new class of chemically inspired robotic actuators for medical devices and food handling automation • Developed detailed test plans and product evaluation tools as a member of the R&D group • Analyzed test results to generate design changes and increase longevity of actuators by 1M cycles	
PROJECTS	 Penn Medicine SafeDrain Device, U. of Penn. Fall 202x (Team of 2) Design, model, and 3-D print prototype of medical device that adds safety and comfort to surgical drains in consultation and collaboration with Penn Medicine physicians Vertical Axis Wind Turbine, Mechanical Engineering Lab, U. of Penn. Fall 202x Designed and built functional wind turbine; conducted various tests to find optimal blade dimensions, gear ratio, 	
	and shape of blades Stirling Engine Machine Design and Manufacturing, Duke University Spring 201x • Designed and manufactured fully functional Gamma-Type Stirling Engine using aluminum	
	 Structural Analysis of Apartment Building Fire Escape, Duke University Fall 201x Used SolidWorks to create CAD model of fire escape and performed and implemented FEA analysis to find maximum safe loads 	
	 Balloon Design Competition, Duke University Spring 2016 (Team of 4) Modeled system on MatLab, constructed 1.8m diameter balloon; awarded 2nd place after maximizing balloon flight time without breaching previously unknown height limits 	
	 Dissect Mechanical Design, Duke University Spring 201x Reverse engineered RC helicopter. Modeled working version of helicopter on SolidWorks. 	
ACTIVITIES	iraduate and Professional Student Association Vice-President (201x-202x); Society of Women Engineers	